Skip to main content
for

‘Are we alone?’ Study refines which exoplanets are potentially habitable

First study to combine 3D climate modeling with chemistry explores M dwarf planets

In order to search for life in outer space, astronomers first need to know where to look. A new Northwestern University study will help astronomers narrow down the search.

The research team is the first to combine 3D climate modeling with atmospheric chemistry to explore the habitability of planets around M dwarf stars, which comprise about 70% of the total galactic population. Using this tool, the researchers have redefined the conditions that make a planet habitable by taking the star’s radiation and the planet’s rotation rate into account.

Among its findings, the Northwestern team, in collaboration with researchers at the University of Colorado Boulder, NASA’s Virtual Planet Laboratory and the Massachusetts Institute of Technology, discovered that only planets orbiting active stars — those that emit a lot of ultraviolet (UV) radiation — lose significant water to vaporization. Planets around inactive, or quiet, stars are more likely to maintain life-sustaining liquid water.

The researchers also found that planets with thin ozone layers, which have otherwise habitable surface temperatures, receive dangerous levels of UV dosages, making them hazardous for complex surface life.

Show Full Release

Multimedia Downloads

M dwarf planet

An artist’s conception shows a hypothetical planet with two moons orbiting within the habitable zone of a red dwarf star. Credit: NASA/Harvard-Smithsonian Center for Astrophysics/D. Aguilar
An artist’s conception shows a hypothetical planet with two moons orbiting within the habitable zone of a red dwarf star. Credit: NASA/Harvard-Smithsonian Center for Astrophysics/D. Aguilar

Interview the Experts